Interaction-Based Collaborative Filtering Methods for Recommendation in Online Dating

نویسندگان

  • Alfred Krzywicki
  • Wayne Wobcke
  • Xiongcai Cai
  • Ashesh Mahidadia
  • Michael Bain
  • Paul Compton
  • Yang Sok Kim
چکیده

We consider the problem of developing a recommender system for suggesting suitable matches in an online dating web site. The main problem to be solved is that matches must be highly personalized. Moreover, in contrast to typical product recommender systems, it is unhelpful to recommend popular items: matches must be extremely specific to the tastes and interests of the user, but it is difficult to generate such matches because of the two way nature of the interactions (user initiated contacts may be rejected by the recipient). In this paper, we show that collaborative filtering based on interactions between users is a viable approach in this domain. We propose a number of new methods and metrics to measure and predict potential improvement in user interaction success, which may lead to increased user satisfaction with the dating site. We use these metrics to rigorously evaluate the proposed methods on historical data collected from a commercial online dating web site. The evaluation showed that, had users been able to follow the top 20 recommendations of our best method, their success rate would have improved by a factor of around 2.3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collaborative Filtering for people-to-people recommendation in online dating: Data analysis and user trial

A common perception is that online dating systems “match” people on the basis of profiles containing demographic and psychographic information and/or user interests. In contrast, product recommender systems are typically based on Collaborative Filtering, suggesting purchases not based on “content” but on the purchases of “similar” users. In this paper, we study Collaborative Filtering for peopl...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

QoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering

Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...

متن کامل

Intelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering

During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010